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ABSTRACT 

We investigate minimal sum-of-products expres- 
sions for multiple-valued logic functions for realization 
by programmable logic arrays. Our focus is on expres- 
sions where product terms consist of the MIN of inter- 
val literals on input variables and are combined using 
one of two operations - SUM or MAX. In binary 
logic, the question of whether or not prime implicants 
are sufficient to optimally realize all functions has been 
answered in the affiimative. We consider the same 
question for higher radix functions. When the combin- 
ing operation is MAX, prime implicants are sufficient. 
However, we show that this is not the case with SUM. 
There is also the question of whether all functions can 
be optimally realized by successively selecting impli- 
cants that are prime with respect to the intermediate 
functions. We show that this is not true either. In fact, 
the number of implicants in a solution using prime 
implicants successively can be sigmficantly larger than 
the number of implicants in a minimal solution. 

I. INTRODUCTION 
Advances in integrated circuit technology have 

made it possible to design circuits that operate using 
more than two logic levels. This has inspired research 
on logic design techniques for realizing multiple-valued 
functions. A recent development has been the intro- 
duction of programmable logic arrays (PLA’s) for 
implementing multiple-valued logic (MVL) functions 

Synthesis with a multiple-valued PLA involves 
expressing a target function in a sum-of-products form. 
Each product term is realized by one column in the 
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PLA; these terms are combined together using a com- 
bining operation to produce the target function. Since 
an expression with fewer product terms results in a 
PLA with fewer columns, V U 1  chip area is reduced, 

It is well known that in binary logic minimal sum- 
of-products expressions can always be obtained by the 
use of prime implicants alone [4]. Non-prime impli- 
cants need never be considered to minimize the 
number of product terms required. In this paper, we 
consider this question for higher radix functions. Our 
interest is in sum-of-products expressions where pro- 
duct terms consist of the MIN of interval literals on 
input variables and the combining operation is SUM 
or MAX. These are the types of expressions realized 
by the PLA’s in [2,5]. 

11. BACKGROUND AND NOTATION 
Let X = { x 1 , x 2 ,  - - . , x R }  be a set of n variables, 

where xi takes on values from R = (0, 1, ..., r - l } .  A 
function f (X )  is a mapping f :R”+R U { r } ,  where r 
is the don’t care value. Specifically, f (X) is said to be 
an n-variable r-valued function. Fig. 1 shows a map 
representation of a 2-variable 4-valued function. A 
function value f (x )  corresponding to a specific assign- 
ment of values x to variables in X is called a miiitenn. 
For example, in Fig. 1 there are three minterms with 
value 1 and three with value 2. 

Functions realized by the PIA’S described in [2,5] 
are composed of four functions, 
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f(X1J2) = l . ~ X x ' : . O X ~  + 2.ox:.3x: 

x2 0 1 2 3  
I I I I 

1 0 0 0 

1 

1 1 I I I 

Figure 1. An example of a 2-variable Cvalued func- 
tion. 

2. MIN: x1 .x2 (= minimum (x1,x2)), and 

3. MAX: ~ 1 0 x 2  (=maximum (x1,x2)), or 

r - 1  ifplus(x1,x~) > r-1 
(x1,x2) otherwise 

\ 

where plus represents ordinary addition and xi is 
viewed as an integer. The SUM operation (+) is 
thus addition truncated to the highest logic value. 

When r = 2, the MIN and literal correspond 
respectively to the binary AND and x*, where 
x* E {x ,q .  There is no difference between SUM and 
MAX; they represent the OR operation. In the reali- 
zation of functions by a multiple-valued PLA, con- 
stants and literals occur as operands of the MIN func- 
tions. A producf term p. @(xl,xZ, * * ,xn) is the MIN 
of a constant and a set of literals where each variablexi 
appears at most once, a n d p  is a constant in the set 
{ 1,2, . . , r}. For example, f ( ~ 1 ~ 2 )  = 2. 'x: . 'xi is a 
product term that is 2 whenxl is 2, 3, or 4 andx2 is 1. 
An intplicunt of a multiple-valued function f (X) is a 
product term Z(X) =p.@(x1,x2, - - * ,xn) such that 
f (x)?Z(x) for every assignment of values x to vari- 
ables in X and p E {1,2 ,..., r-l}. Also, I Z ( X )  I 
denotes the nonzero constant p associated with the 
implicant Z (X). An implicant Z (X) of a function f ( X )  
is apritne impiicanf if there is no oilier implicant Z'(X) 
off (X) such that Z'(x)>Z(x) for every assignment of 
values x to variables in X. For example, 1. 'xi . Ox: is 
an implicant of the function shown in Fig. 1, but it is 
not a prime implicant. However, 1. Ox! . Ox: is a prime 
implicant. Any function can be expressed as the SUM 
or MAX of implicants [5]. For example, the function 
in Fig. 1 can be expressed as the SUM of 2 implicants, 

- 

We use the term sum-of-producfs to describe functions 
realized by multiple-valued PLA's, where sum refers to 
SUM or MAX. A sum-of-products expression for 
function f (X) is minimal if there is no other expres- 
sion for f (X) with fewer product terms. For example, 
(1) is a minimal sum-of-products expression. Given 
f (X), implicant Z(X) covers a minterm at x if 
f (x) = Z(x). Therefore, g ( X )  = f (X) - Z(X) has the 
propertyggx) = 0. 

111. MINIMAL SUM-OF-PRODUCTS 
EXPRESSIONS USING MAX 
A version of this problem has been considered by 

Miller and Muzio [3]. In their work, varying costs are 
assigned to literals of the input variables, and, there- 
fore, also to the product terms. They use the MAX as 
the combining operator and show that in order to 
minimize total cost, prime implicants are not sufficient. 
This observation is made on the basis of an example 
where the use of prime implicants alone results in a 
non-minimal solution based on their cost factors. 
However, if all literals are assigned the same cost, 
prime implicants are sufficient. 

In a PLA, however, each product term is realized 
with one column. The interest is then to simply 
minimize the number of product terms. The following 
theorem shows that when the combining operator is 
MAX, only prime implicants need be considered. This 
result has been applied in previous papers but as far as 
we know has not been proven formally. 

Theorem 1: k t  f (X)  be an n-variable r-valued func- 
tion, and let S, be the set of prime implicants of 
f (X).  There exists a minimal sum-of-products 
expression off (X)  where sum is MAX such that 
every product term is a member of S,. 

Proof: The proof is constructive starting with any 
minimal expression for f (X). Let, 

be a minimal sum-of-products expression for the 
function f (X). This implies that for every assign- 
ment of values x to variables in X, 

I 

I 
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Let some implicant Zi(X) in the expression in (1) 
be non-prime, that is, Ii(X) $S,. Since I@) is 
not a prime implicant, it follows that there exists a 
prime implicant Ji (X)  such that, 

1 1  0 0 0 

2 1  0 0 0 

3 0  0 0 0 

Ji (X)  1 Zi ( X )  (3) 

for every assignment of values x to variables in X. 
Also, from the definition of an implicant, for every 
possible assignment x, 

Equations (2), (3) and (4) together give, 

f ( X )  = r?"fm Zl(X), I z ( X ) ,  - - - 9 

Therefore, J i ( X )  can replace Ii (X)  in (1) giving, 

In a similar fashion every non-prime implicant in 
equation (1) can be replaced with a corresponding 
prime implicant. Thus a minimal expression for 
f (X)  can be obtained that uses only prime impli- 
cants. 

Q.E.D. 

As an example, consider the function shown in 
Fig. 1. A minimal expression for this function is, 

f(xl,XZ) = I.o~:.o~ 0 2 . 0 ~ : . 3 ~ ;  (7) 

in which 1. Oxy. '3 is non-prime. However, it may be 
replaced by 1. Ox! . Ox; yielding a minimal expression 
consisting of prime implicants alone, 

IV. MINIMAL SUM-OF-PRODUCTS 
EXPRESSIONS USING SUM 
In this section, we ask the question - Does there 

exist a minimal sum-of-products expression for every 

n-variable r-valued function f (X) using SUM as the 
combining operator where all the product terms are 
prime implicants of f(X) ? The answer, unfor- 
tunately, is NO. In fact, there exist functions where no 
expression (minimal or non-minimal) contains prime 
implicants exclusively. Consider, for example, the 2- 
variable 4-valued function f (x1,x2) shown in Fig. 1. 
This function has just two prime implicants, 

(1) l.ox~.ox;, and 

(2) 2 . 0 2 .  ";. 
No combination of these two prime implicants yields 
the function f (x1,xZ). In particular, the SUM of these 
two prime implicants has the value 3 when 
(x1,xz) = (0,3) but f (0,3) = 2. A non-prime impli- 
cant must be used in every expression for f ( x I , x 2 )  - 
minimal or not. 

This negative result implies that a search for a 
minimal sum-of-products expression must include 
implicants that are non-prime with respect to the tar- 
get function. In a typical function, there are many 
more implicants than prime implicants. For 
the trivial 4-valued function f ( x 1 , x 2 )  = 2 
prime implicant and 300 implicants. 

example, 
has one 

Figure 2. The function of Fig. 1 with one prime impli- 
cant subtracted. 

However, there is still the possibility that a 
minimal sum-of-products expression exists consisting 
of implicants that are prime with respect to the inter- 
mediate functions. That is, at each step in the minimi- 
zation of a given function, the chosen implicant is 
prime with respect to the intermediate function. This 
property holds for the function of Fig. 1. Specifically, 
subtract the prime implicant I l ( x l , x z )  = 2. Ox?. 'x ; .  



The remaining function, g(x1,xz) = f (x1,x2) - 
Zl(xl,x2) can be covered with the implicant 1.  Ox:. od 
which is prime with respect to g(x1,xz) (Fig. 2). A 
formal description of an algorithm that chooses impli- 
cants that are prime with respect to the intermediate 
functions is given below. 

Algorithm 1: 

1. St@. 
2. If f ( X )  has no minterms in the range 

[l, 2, ..., r-11, STOP and return S.  

3. I ( X )  + some prime implicant off Q such that 
Z (X)  covers at least one minterm in f (X)  that is 
in the range [l, 2, ..., r-11. 

4. S + S U I ( X ) .  

5- 

6. Go to step 2. 
f (x) +f (X)  -l(x). 

I t  should be clear that at each iteration at least one 
additional minterm in the function f(X) which is 
nonzero and not a don't care is covered. Further, the 
subtraction process does not generate new minterms 
where the original function was a zero or a don't care; 
when a minterm is covered it either becomes a zero or 
a don't care. Since there are only a finite number of 
minterms to start with, the procedure must terminate 
after a finite number of steps. It is important to note 
that all the implicants in the solution set S are not 
necessarily prime with respect to the input function, 
although at least one must be so for any non-trivial 
input function. Note also that each iteration through 
the loop requires the examination only of prime impli- 
cants of the current f (X). 

Does this now mean that we can always select 
prime implicants in some order to obtain a minimal 
expression for a given function ? Consider the 2- 
variable 5-valued function shown in Fig. 3 [6]. This 
function has a cycle of 2's in it. There is only one 
minimal expression for this function, 

f (Xl,X2) = 2 . 0 4 .  'xi 0 2 .  ' x i .  *x; 0 
2. 2x:. 3x; 0 2 .  " x : .  Ox; . (9) 

None of the four implicants in the above expression 
are prime. It is easily seen that if any prime implicant 
is chosen, it breaks up a string of 2's in a perpendicular 
direction, thereby producing a non-minimal solution. 
Algorithm 1 never produces a minimal solution in this 
case. 

Figure 3. A 2-variable 5-valued function that requires 
the use of non-prime implicants to produce a 
minimal expression. 

This negative result implies that a search for a 
minimal sum-of-products expression must include 
implicants that are non-prime with respect to the tar- 
get function and intermediate functions. As this exam- 
ple applies to the case of 2-variable 5-valued functions, 
it is natural to ask if a similar observation is true of 
other radices and variable cardinalities. Since the 
function of Fig. 3 can be a subfunction of an n-variable 
5-valued function where n 23,  it is true of these func- 
tions, as well. Further, similar examples can be con- 
structed for any radix r > 5 and for n 22.  

However, the example does not extend to r < 5. 
Indeed, for r = 2, prime implicants are sufficient to 
produce minimal sum-of-products expression for all 
functions. Thus, there is the question of whether the 
observation holds for 3 9 5 4 .  For the case of ti  = 2 
and r = 4, the observation is shown to be true by the 
function of Fig. 4. 

A minimal expression for this function requires 
five implicants. 

21 5 



Fiyre4 .  A 2-variable 4-valued function which 
requires the use of non-prime implicants to 
produce a minimal expression. 

0 1  0 1 0  

1 0  0 0 1 

2 0  1 0  0 

3 0  0 0 1 

None of the implicants in (10) is prime. It is not easy 
to see that there is no minimal expression that uses 
prime implicants only. This function has six prime 
implicants which are listed below. 

(1) 1. ox: . Ox! 

(2) 1.3xx:.ox; 

(3) 1 . 5 : . 0 2  

(4) 2.*x:.oxq 

(5) 2.5: .'$ 
(6) 2. ' x :  . 'xi 

It can be verified that if any of these prime implicants 
is subtracted from the function, the new function 
obtained still needs five implicants in a minimal cover. 
For example, if implicant (3) is subtracted, the function 
becomes as shown in Fig. 5. There are five 1's left and 
each requires one implicant to cover it. This 2-variable 
4-valued function is, therefore, an example where 
prime implicants cannot be successively picked to pro- 
duce a minimal expression. 

The case of ternary logic funclions remains. Not 
allowing don't cares, there are 3(3 = 19683 3-valued 
functions of 2-variables. A computer program was 
developed to analyze each of these functions, and 
record those for which a minimal sum-of-products 
expression cannot be generated by successively choos- 
ing prime implicants. Wenty one such functions were 
found. These can be placed in six classes, A through F 

Figure 5. The function of Fig. 4 with one prime impli- 
cant subtracted. 

where each member of a class is obtained from 
another by a rotation of 90, 180 or 270 degrees. 
Classes labelled A through E consist of four functions 
each while class F consists of a single symmetric func- 
tion. Fig. 6 shows a representative from each of the six 
classes. 

The function in class F is interesting. It has a 
minimal cover consisting of five implicants, 

No matter what implicant is subtracted from this func- 
tion, a 2 can only become a 1 or a 3 (don't care), or it 
can remain a 2. Therefore, the only way to cover the 
1's in the function using prime implicants is with the 
implicant 1. '3 . '4. However, if this implicant is sub- 
tracted, five 1's remain. These require five more 
implicants as no two 1's are adjacent. Thus, if only 
prime implicants are used, this function has a cover 
whose size is at least six. 

This pattern extends to functions with a larger 
number of variables as well. Consider an n-variable 
3-valued function f (X )  with n 22 which is as follows, 

2 whenxi,xjE{0,2}, Oci, j < n ,  i + j  

1 otherwise 
2 whenxl = x 2 =  = x , = l .  (12) 
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x2 \ o  1 2  

1 1  

2 1  2 

Class A 

\ 
X]"[l' 

2 1  1 2  

\ 

2 2 / 1 / 2  

Class B 

XjRl 
2 1  2 

x 2 j - q q  

2 1  2 

Class c 

X 2 j - q q - q  

2 2  1 2  

Class D Class E Class F 

Figure 6. Representative 2-variable 3-valued functions which require the use of non-prime implicants to produce 
minimal expressions. 

\ o  1 2  

2 2  

x3 = o  

x2 

x3 = 1 

\ o  1 2  

:~~ 
2 2  

x3 = 2 

Figure 7. A 3-variable 3-valued function which requires the use of non-prime implicants to produce a minimal 
expression. 

Fig. 7 shows the function of (12) when n = 3. It is 
instructive to imagine this function as a set of l's and 
2's distributed on a n-dimensional hyper-cube. For 
such a cube, aface is obtained by fixing some variable 
at 0 or 2. Similarly, an edge - which is the meeting of 
two faces, is obtained by fixing a pair of variables at 0 

or 2, independently. The function of (12) has the value 
2 along all edges and at all off-face locations, and the 
value 1 everywhere else. It can be expressed in a sum- 
of-products expression using (21 + 1) implicants as fol- 
lows, 
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TABLE I. Implicants needed to produce minimal sum-of-products expressions using interval literals of input vari- 
ables to form product terms. 

Function type Combining 
(n-variable, r-valued) Operator 

Implicants sufficient to 
produce a minimal 

sum-of-products expression 
Binary case (r = 2) I 
n-variable, 2-valued 

Multiple-valued case 

MAX/SUM Prime imps. only [4] 
(MAX and SUM are both 
equivalent to OR) 

n-variable, r-valued 
1-variable, r-valued 
n-variable, r-valued, (n 2 2) 

f ( x )  = l.OX(: + 1 . 2 4  + l.OX,o + 1 . 2 X t  + 
. * *  + 1.oxg + 1 . 2 3  

+ 2.1x:.1x:. * . . . l  X n  * (13) 
As before, the only prime implicant that can be 

used to cover the 1's ;P this function corresponds to the 
constant 1 function. If this is subtracted out, however, 
1's are left along every edge and in the center. Note 
that no two edges can be covered completely with one 
implicant. Also, the 1 left in the center is completely 
isolated. Since an n-dimensional hyper-cube has 
21 (n -1) edges, an expression using prime implicants 
requires 2n (n -1) + 2 product terms. Thus, the 
difference between using all implicants and using suc- 
cessive prime implicants can be large. For instance, 
when n = 6, the number of product terms required are 
13 and 62 respectively ! To generalize this function for 
any radix r > 2, the values 1 and 2 in equation (12) may 
be replaced with r-2 and r-1 respectively. This leads 
us to the following theorem. 

MAX 
SUM 
SUM All implicants (Theorem 2) 

Prime imps. only (Theorem 1) 
Prime imps. only (Theorem 3) 

Theorem 2: In each set of n-variable r-valued func- 
tions with ti 2 2  and r 2 3 ,  there exists a function 
f ( x )  with the property that all minimal sum-of- 
products expressions for f (X) where sum is SUM 
are composed entirely of non-prime implicants. 

Finally, in the case of unary r-valued functions a 
minimal expression can be found using only prime 
implicants. The procedure is as follows. Let f (x) be 
an r-valued function of a single variable x. 

1. s +g. 
2. Iff (1) has no minterms in the range [ 1,2, ... , r -11, 

STOP and return S. 

Find a nonzero minterm with the smallest logic 
value. Let Z (x) be the prime implicant that covers 
this minterm (for unary functions there can be at 
most one prime implicant associated with each 
minterm). 

3. 

4. S +-SUZ(X). 

5. 

6. Go to step 2. 
f (x)  +-f (x) -I@)* 

On exit, S contains the prime implicants required to 
cover the input function f (x). This proves the follow- 
ing. 

Theorem 3: Let f (x) be a 1-variable r-valued function 
and let S, be the set of prime implicants off (x).  
There exists a minimal sum-of-products expres- 
sion where sum is SUM such that every product 
term is a member of S,. 

V. CONCLUSION 
Finding minimal sum-of-products expressions for 

multiple-valued functions is important to implement 
these functions using compact programmable logic 
arrays. This paper has focussed on expressions where 
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interval literals of input variables are used to form pro- 
duct terms and the combining operation is either SUM 
or MAX. The question of whether it is sufficient to 
consider prime implicants alone, or whether all impli- 
cants need to be considered to obtain minimal expres- 
sions has been investigated. When the MAX opera- 
tion is used, a minimal expression can be found that 
uses only prime implicants of the input function. With 
the SUM there may not exist my expression that uses 
only prime implicants of the input function. It is possi- 
ble, however, to select prime implicants successively to 
cover the input function. It has been seen that this 
does not guarantee minimality for all but unary func- 
tions. There exist functions for which the difference 
between using successive prime implicants only and 
using all implicants is significantly large. Table I shows 
a summary of the results. 
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